Regioselective Formation of 2,4,5-Trisubstituted Oxazoles through Transition-Metal Free Heterocyclization of 1,3-Diynes with N,O‑Bis(trimethylsiyl)acetamide

Liang Zhang and Xiaoming Zhao*

Department of Chemistry, State Key Lab[ora](#page-2-0)tory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, 200092 Shanghai, P. R. China

S Supporting Information

[AB](#page-2-0)STRACT: [Transition-me](#page-2-0)tal free heterocyclization reaction of 1,3-diynes with N,O-bis(trimethylsiyl)acetamide was accomplished in the presence of t-BuOK and acetonitrile at 120 °C. This method regioselectively gave 2,4,5 trisubstituted oxazoles in yields up to 97%.

Oxazoles represent an important class of heterocycles with
biological activities¹ and are of great importance to
anthotic intermediates² Several patural and bioactive malegyles synthetic intermediates.² Several natural and bioactive molecules such as Diazonamide A_1 ³ [O](#page-2-0)xaprozin,⁴ and Siphonazole⁵ contain $2,4,5$ -trisubstituted ox[az](#page-2-0)ole fragments. Therefore, synthetic methods for 2,4,5-trisu[bs](#page-2-0)tituted ox[azo](#page-2-0)le attract great [a](#page-2-0)ttention during the latest decade. A number [o](#page-2-0)f strategies for 2,4,5 trisubstituted oxazoles have emerged: (i) heterocyclization of alkynes with amides; $\frac{7}{1}$ (ii) heterocyclization of alkynes with nitrides;⁸ (iii) intramolecular annulations of β -alkoxy- β ketoenamides; $\overset{9}{2}$ and [\(](#page-2-0)iv) the annulation reaction between isonitril[es](#page-2-0) and carboxylic acids mediated by Lewis acid.¹⁰ In some method[s,](#page-2-0) a key step is that an anion of amide is usually formed as a soft N-nucleophile A. In this regard, A is a reso[nan](#page-2-0)ce form of A' ; however, A' is not allowed in such a reaction since it is a hard O-nucleophile (Scheme 1). We speculated that N,Obis(trimethylsiyl)acetamide (BSA) may serve as a structural equivalent of A′ to undergo a heterocyclization of 1,3-diynes (eq-1 of Scheme 2).

Scheme 1. Anion of Amides and Imines

To the best of our knowledge, BSA and its derivatives have not yet been employed as intermediates for the synthesis of 2,4,5-

trisubstituted oxazoles. In fact, BSA is widely applicable as a silylating agent 11 in organic synthesis. More significantly, the analogue ($R = Et$, Ph, and other groups) of BSA can be readily synthesized ac[cor](#page-2-0)ding to the known procedure.¹² In connection with our effort on the synthesis of heterocyclic compounds derived from $1,3$ -diynes,¹³ we herein report a [tr](#page-2-0)ansition-metal free heterocyclization reaction of 1,3-diynes with BSA, which specifically allows for t[he](#page-2-0) synthesis of (E) -2,4,5-trisubstituted oxazoles.

Our studies commenced with a heterocyclization reaction between 1,4-diphenylbuta-1,3-diyne (1a) and BSA 2 in the absence of transition-metal catalyst. This reaction was performed in acetonitrile (MeCN) at 120 °C and the corresponding oxazoles were not observed (entry 1). To our delight, the formation of (E) -2-methyl-4-phenyl-5-styryloxazole 3a^{13c} was obtained in a 45% yield when tetrabutylammonium fluoride trihydrate (TBAF \cdot 3H₂O) was utilized (entry 2). It is of [int](#page-2-0)erest to note that (E)-2-methyl-4-styryl-5-phenyloxazole 4a was not observed (entry 2). Note that the treatment of BSA 2 with 2 equiv of base such as $TBAF·3H₂O$ could competitively form either an anion on nitrogen (eq-1 in Scheme 1) or on oxygen (eq-2 in Scheme 1) since O−Si and N−Si bond energy is ∼410 and ∼510 kJ/mol, respectively.¹⁴ The results indicated that only the anion on nitrogen was formed since the N−Si bond is more reactive than O−Si towar[d](#page-2-0) the desilylation in the presence of TBAF in this case (entry 2).

Then a diversity of solvents including MeCN, toluene, dioxane, and 1,2-dichloroethane (DCE) was screened. The results revealed that MeCN gave a better yield than both toluene and dioxane (entries 3−4); DCE is ineffective for this reaction (entry 5). The nature of bases has a great influence on the results of this reaction. A range of bases such as K_2CO_3 , K_3PO_4 , sodium methylate (MeONa), $Cs₂CO₃$, and potassium tert-butoxide (t-BuOK) was examined. We found that t-BuOK was the optimum

Received: October 23, 2014 Published: December 30, 2014 one, producing 3a in 95% yield (entry 10). K_3PO_4 , MeONa, and $Cs₂CO₃$ resulted in good to high yields (entries 6–9). Interestingly, this reaction is temperature sensitive in the 100− 130 °C range. The reaction at 120 °C gave rise to the highest yield (entry 10). The reaction at 100 and 130 °C led to fair to excellent yields, respectively (entries 11 and 12). The reaction was carried out at 80 °C and it gave a poor yield (entry 13). Note that when 1 equiv of t-BuOK instead of 2 equiv of t-BuOK was utilized it only provided 3a in 15% yield (entry 14). (E) -2-Methyl-4-styryl-5-phenyloxazole 4a was not detected in all cases (entries 2−14).

With the optimized reaction conditions presented in entry 10 of Table 1 in hand, the scope of a range of symmetrical 1,3-diynes

Table 1. Optimizing Reaction Conditions for

Heterocyclization of 1,4-Diphenylbuta-1,3-diyne 1a with BSA 2^a

 a Reaction conditions: 1a (0.2 mmol), BSA 2 (0.24 mmol), and additive (0.4 mmol) in solvent (2 mL) in a sealed tube at 120 °C. The crude products (3a and 4a) were analyzed by ¹H NMR and HPLC.
^bIsolated vields ^ct-BuOK (0.2 mmol) was employed Isolated yields. ^ct-BuOK (0.2 mmol) was employed.

1 was investigated (Table 2). The results revealed the following factors: one, the reaction favored 1a and 1,3-diynes substrates 1b−1d and 1h bearing the electron-donating groups (e.g., 4-Me, 4-MeO, 4-pent, and 3-Me) on the phenyl ring, which afforded (E)-2,4,5-trisubstituted oxazoles^{13c} (3b–d and 3h) in excellent yields (entries 1−4 and 8); two, 1,3-diynes substrates 1e−g with electron-withdrawing groups (e[.g.,](#page-2-0) 4-F, 4-Cl, and 4-Br) on the phenyl ring led to (E) -2,4,5-trisubstituted oxazoles^{13c} (3e−g) in moderate yields (entries 5−7); three, 2-thienyl-substituted 1,3 diyne 1i worked well at somewhat elevated reactio[n te](#page-2-0)mperature 140 °C (entry 9); four, tetradeca-6,8-diyne 1j (entry 10) and hexa-2,4-diyne-1,6-diyl diacetate 1k failed to undergo this reaction. Furthermore, the trisubstituted oxazoles 4 were not observed in all cases (entries $1-10$). In addition, (E) trimethylsilyl 2,2,2-trifluoro-N-(trimethylsilyl)acetimidate was examined and the corresponding product was not obtained.

We further extended this method to unsymmetrical 1,3-diynes 1′ under the optimal conditions (Table 3). The results indicated that 1,3-diynes 1′ with either electron-donating (e.g., 4- $MeOC₆H₄$ and 4-pent- $C₆H₄$) groups or electron-withdrawing

 $a_{\text{Reaction conditions: 1,3-diynes 1 (0.2 mmol), BSA 2 (0.24 mmol),}$ and t-BuOK (0.4 mmol) in MeCN (2 mL) in a sealed tube at 120 $^{\circ}$ C; the crude products (3 and 4) were analyzed by ¹H NMR and HPLC.
^bIsolated vields ^cAt 140 °C Isolated yields. ^cAt 140 °C.

BuOK (0.4 mmol) in MeCN (2 mL) in a sealed tube at 120 °C. ^bIsolated yields.

group (e.g., $4\text{-}\mathrm{FC}_6\text{H}_4$) on the phenyl ring resulted in the corresponding oxazoles 3a′−b′ and 5a′−b′ in total 84−89% yields with acceptable regioselectivities (entries 1 and 2).

The controlled experiments were conducted under the optimized conditions: (i) diphenylacetylene and hex-1-ynylbenzene other than 1,4-diphenylbuta-1,3-diyne (1a) were employed, and no heterocyclization reaction occurred. These outcomes illustrated that two triple bonds are required for the heterocyclization between 1,3-diynes 1 and BSA 2; (ii) the component solvent (2 mL of CD_3CN and 50 μ L of H_2O) was used in entry 1 of Table 2, a dideuterated vinyl unit was observed; (iii) the component solvent (2 mL of CH₃CN and 50 μ L of D₂O) was employed, and no deuterated products were obtained (see ¹H NMR spectra in SI).

A plausible mechanism was proposed and shown in Scheme 3. The treatment of [BS](#page-2-0)A with t-BuOK in MeCN at 120 °C predominantly forms an anion $\mathbf{A}^{\prime},^{15}$ an addition of which to 1,[3](#page-2-0) dyine produces B. A protonation of B with $CH₃CN$, followed by a desilylation¹⁵ in the presen[ce](#page-2-0) of t -BuOK gives C. A heterocyclization reaction of C occurs, followed by quenching with $CH₃CN$, [to](#page-2-0) produce (E)-2,4,5-trisubstituted-(prop-1-enyl)oxazole.

In conclusion, we have developed the heterocyclization reaction of 1,3-diynes 1 with BSA 2 in the presence of t-BuOK, which specifically provided (E) -2,4,5-trisubstituted-(prop-1-

Scheme 3. Plausible Mechanism of the Present Reaction

enyl)-oxazoles in moderate to excellent yields. These are the first examples in which BSA is used as a building block for the synthesis of (E) -2,4,5-trisubstitutedoxazoles.

■ ASSOCIATED CONTENT

S Supporting Information

Experimental procedures, characterization data for all new compounds, descriptions of stereochemical assignments, and copies of ${}^{1}H$ and ${}^{13}C$ NMR spectra for all new compounds reported in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: xmzhao08@mail.tongji.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the NSFC (21272175) for generous financial support.

■ REFERENCES

(1) (a) Wipf, P. Chem. Rev. 1995, 95, 2115. (b) Wang, W.; Yao, D.; Gu, M.; Fan, M.; Li, J.; Xing, Y.; Nan, F. Bioorg. Med. Chem. Lett. 2005, 15, 5284. (c) Desroy, N.; Moreau, F.; Briet, S.; Le Fralliec, G.; Floquet, S.; Durant, L.; Vongsouthi, V.; Gerusz, V.; Denis, A.; Escaich, S. Bioorg. Med. Chem. 2009, 17, 1276. (d) Heng, S.; Gryncel, K. R.; Kantrowitz, E. R. Bioorg. Med. Chem. 2009, 17, 3916. (e) Dalisay, D. S.; Rogers, E. W.; Edison, A. S.; Molinski, T. F. J. Nat. Prod. 2009, 72, 732. (f) Jin, Z. Nat. Prod. Rep. 2009, 26, 382. (g) Jin, Z. Nat. Prod. Rep. 2011, 28, 1143.

(2) (a) Palmer, D. C., Ed. Oxazoles: Synthesis, Reactions, and Spectroscopy, Part A; J. Wiley & Sons: Hoboken, NJ, 2003; Vol. 60. (b) Palmer, D. C., Ed. Oxazoles: Synthesis, Reactions, and Spectroscopy, Part B; J. Wiley & Sons: Hoboken, NJ, 2004; Vol. 60. (c) Vedejs, E.; Barda, D. A. Org. Lett. 2000, 2, 1033. (d) Atkins, J. M.; Vedejs, E. Org. Lett. 2005, 7, 3351. (e) Zhang, J.; Ciufolini, M. A. Org. Lett. 2009, 11, 2389. (f) Walsh, C. T.; Macolmson, S. J.; Young, T. S. ACS Chem. Biol. 2012, 7, 429.

(3) (a) Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 2303. (b) Cruz-Monserrate, Z.; Vervoort, H. C.; Bai, R.; Newman, D. J.; Howell, S. B.; Los, G.; Mullaney, J. T.; Williams, M. D.; Pettit, G. R.; Fenical, W.; Hamel, E. Mol. Pharmacol. 2003, 63, 1273. (c) Burgett, A. W. G.; Li, Q. Y.; Wei, Q.; Harran, P. G. Angew. Chem., Int. Ed. 2003, 42, 4961. (d) Nicolaou, K. C.; Rao, P. B.; Hao, J. L.; Reddy, M. V.; Rassias, G.; Huang, X. H.; Chen, D. Y. K.; Snyder, S. A. Angew. Chem., Int. Ed. 2003, 42, 1753. (e) Cheung, C.-M.; Goldberg, F. W.; Magnus, P.; Russell, C. J.; Turnbull, R.; Lynch, V. J. Am. Chem. Soc. 2007, 129, 12320.

(4) (a) Greenblatt, D. J.; Matlis, R.; Scavone, J. M.; Blyden, G. T.; Harmatz, J. S.; Shader, R. I. Br. J. Clin. Pharmacol. 1985, 19, 373. (b) Todd, P. A.; Brogden, R. N. Drugs 1986, 32, 291. (c) Rainsford, K.

D.; Omar, H.; Ashraf, A.; Hewson, A. T.; Bunning, R. A. D.; Rishiraj, R.; Shepherd, P.; Seabrook, R. W. Inflammopharmacology 2002, 10, 185. (5) Nett, M.; Erol, O.; Kehraus, S.; Kock, M.; Krick, A.; Eguereva, E.; Neu, E.; König, G. M. *Angew. Chem., Int. Ed. 2006, 45, 3863*.

(6) For recent examples of oxazole syntheses, see: (a) Weyrauch, J. P.; Hashmi, A. S. K.; Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic, M.; Visus, J.; Rominger, F.; Frey, W.; Bats, J. W. Chem.—Eur. J. 2010, 16, 956. (b) Li, Y.; Xu, X.; Tan, J.; Xia, C.; Zhang, D.; Liu, Q. J. Am. Chem. Soc. 2011, 133, 1775. (c) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412. (d) Zhong, C. L.; Tang, B. Y.; Yin, P.; Chen, Y.; He, L. J. Org. Chem. 2012, 77, 4271. (e) Xu, Z.; Zhang, C.; Jiao, N. Angew. Chem. 2012, 124, 11529; Angew. Chem., Int. Ed. 2012, 51, 11367.

(7) (a) Coqueron, P. Y.; Didier, C.; Ciufolini, M. A. Angew. Chem., Int. Ed. 2003, 42, 1411. (b) Cano, I.; Alvarez, E.; Nicasio, M. C.; Perez, P. J. J. Am. Chem. Soc. 2011, 133, 191. (c) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem. 2011, 123, 9093; Angew. Chem., Int. Ed. 2011, 50, 8931. (d) Li, X.; Huang, L.; Chen, H.; Wu, W.; Huang, H.; Jiang, H. *Chem. Sci.* **2012**, 3, 3463. (e) Wachenfeldt, H. V.; Röse, P.; Paulsen, F.; Loganathan, N.; Strand, D. Chem.-Eur. J. 2013, 19, 7982. (f) Bartoli, G.; Cimarelli, C.; Cipolletti, R.; Diomedi, S.; Giovannini, R.; Mari, M.; Marsili, L.; Marcantoni, E. Eur. J. Org. Chem. 2012, 630.

(8) (a) Fukumoto, T.; Aso, Y.; Otsubo, T.; Ogura, F. J. Chem. Soc., Chem. Commun. 1992, 1070. (b) Clauss, K. U.; Buck, K.; Abraham, W. Tetrahedron 1995, 7181. (c) Wang, J.; Luo, S.; Huang, J. B.; Mao, T. T.; Zhu, Q. Chem.-Eur. J. 2014, 20, 11220.

(9) (a) Wu, J.; Chen, W.; Hu, M.; Zou, H.; Yu, Y. Org. Lett. 2010, 12, 616. (b) Lechel, T.; Gerhard, M.; Trawny, D.; Brusilowskij, B.; Schefzig, L.; Zimmer, R.; Rabe, J.; Lentz, D.; Schalley, C. A.; Reissig, H. U. Chem.-Eur. J. 2011, 17, 7480. (c) Yu, X. Z.; Xin, X. Y.; Wan, B. S.; Li, X. W. J. Org. Chem. 2013, 78, 4895.

(10) (a) Odabachian, Y.; Tong, S.; Wang, Q.; Wang, M. X.; Zhu, J. Angew. Chem. 2013, 125, 11078; Angew. Chem., Int. Ed. 2013, 52, 10878. (b) Lalli, C.; Bouma, M. J.; Bonne, D.; Masson, G.; Zhu, J. Chem.-Eur. J. 2011, 17, 880. (c) Mossetti, R.; Pirali, T.; Tron, G. C.; Zhu, J. Org. Lett. 2010, 12, 820. (d) Zhang, J.; Coqueron, P.-Y.; Vors, J.-P.; Ciufolini, M. A. Org. Lett. 2010, 12, 3942. (e) Elders, N.; Ruijter, E.; de Kanter, F. J. J.; Orru, R. V. A. Chem.-Eur. J. 2008, 14, 4961. (f) Wang, S. X.; Wang, M. X.; Wang, D. X.; Zhu, J. Org. Lett. 2007, 9, 3615.

(11) Klebe, J. F.; Finkbeiner, H.; White, D. M. J. Am. Chem. Soc. 1966, 88, 3390.

(12) (a) Lukevics, E.; Pudova, O. Sci. Synth. 2002, 4, 305. (b) Jonczyk, A.; Kowalkowska, A. Sci. Synth. 2006, 8b, 1141.

(13) (a) Tang, J. L.; Zhao, X. M. RSC Adv. 2012, 2, 5488. (b) Tang, J. L.; Ming, L.; Zhao, X. M. Synthesis 2013, 45, 1713. (c) The heterocyclization of 1,3-diynes with nitrides and alkali-metal hydroxide was described in our previous paper; the molecular structure of (E) -2methyl-5-(4-methylstyryl)-4-(p-tolyl)oxazole 3b has been established by its X-ray analysis, see: Ming, L.; Tang, J. L.; Zhao, X. M. Synthesis 2014, 46, 2499.

(14) Lou, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: Boca Raton, FL, 2003.

(15) Desilylation occurred by means of the use of t-BuOK, see: (a) Masato, I.; Eiji, S.; Hidemaso, T. Synlett 2002, 8, 1329. (b) Anderson, J. C.; Alice, F. J. Chem. Soc., Perkin Trans. 1 2000, 18, 3025.